Yashwantrao Chavan College of Science, Karad

Department of Physics

PHYSICS COURSE OUTCOMES

Academic Year 2024-2025

Annexure-c

Course Outcomes: BSc. I Paper I: DSC-1 A MECHANICS		
By the end of this Course student should be able to know about:		
CO1:	Students are able to understand and identify scalar and vector physical quantities	
	in mechanics	
CO2:	Students are able to understand and apply vector algebraic methods to elementary	
	exercises in mechanics	
CO3:	Students are able to understand and apply basic concepts of rotational motion	
CO4:	In general, students are capable of correlating above concepts and methods in	
	mechanics to both theoretical and experimental domains revealing analytical as	
	well as numerical skills	
BSc. I Paper I: DSC-2A ELECTRICITY & MAGNETISM-I		
	By the end of this Course student should be able to know about:	
CO1:	Students are able to understand the physical significance of gradient, divergence	
	and curl	
CO2:	Students are able to apply concepts in vector calculus such as gradient, divergence	
	and curl related to vector and scalar fields using Gauss, Stokes and green's theorem	
CO3:	Students are able to understand and apply concepts of electrostatic field, potential	
	to point charges, electric dipole and geometrically regular charged bodies	
CO4:	Students are able to understand and apply concept of energy density in electric field	

CO5:	Students are capable of applying above concepts to solve numerical exercise in	
	electrostatics	
BSc. I Sem-I: DSC- PHYSICS Practical -I		
By the end of this Course student should be able to know about:		
CO1:	Apply fundamental mechanical principles: Utilize concepts like moment of	
	inertia, simple harmonic motion, and gravity to design and conduct experiments,	
	analysing and interpreting results.	
CO2:	Develop experimental skills: Demonstrate competence in setting up apparatus,	
	taking precise measurements, and calculating uncertainties, understanding	
	limitations and sources of error.	
CO3:	Explore electrical components and circuits: Classify and characterize resistors,	
	capacitors, and galvanometers based on their properties and roles in circuits,	
	measuring resistance and magnetic field strength.	
CO4:	Investigate wave phenomena and their interactions: Analyze the behavior of	
	sound waves in different media (magnetic vs. non-magnetic), employing a	
	sonometer to determine frequency and comprehend the influence of material	
	properties.	
	BSc. I Paper III: DSC-1B PROPERTIES OF MATTER	
	By the end of this Course student should be able to know about:	
CO1:	Students are able to revise basic concepts such as stress, strain and elastic	
	constants of elasticity	
CO2:	Students are able to derive elastic constants for beam supported at both ends and	
	at one end	
CO3:	Students are able to derive elastic constant (eta) of a wire under torsional	
	oscillations (Searle's Method)	

CO4:	Students are able to explain the phenomenon of surface tension on the basis of	
	molecular forces	
CO5:	Students are able to derive the relation between surface tension and excess	
	pressure	
CO6:	Students are able to perform an experiment to determine ST by Jaeger's method	
CO7:	Students are able to discuss and state the factors affecting the ST	
CO8:	Students are able to understand fluid dynamics and its applications	
CO9:	Students are able to understand viscosity and experimental determination of	
	coefficient of viscosity of liquid by Poiseuille's method	
CO10:	Students are able to understand effect of temperature and pressure on viscosity of	
	liquid.	
CO11:	In general, students are capable of correlating above concepts and methods to	
	both theoretical and experimental domains revealing analytical as well as	
	numerical skills	
BSc. I Paper III: DSC-2B ELECTRICITY & MAGNETISM-II		
	By the end of this Course student should be able to know about:	
CO1:	Students are able to understand importance of complex numbers in analysis of AC	
	Circuits contacting Inductance(L) Capacitor(C) and Resistance (R) and their	
	various configurations	
CO2:	Students are able to define and apply the concepts in AC aircraft and a	
	Students are able to define and apply the concepts in AC circuits such as	
	Impedance (Z), reactance (XC and XL), Admittance, Susceptance and Quality	
CO3:	Impedance (Z), reactance (XC and XL), Admittance, Susceptance and Quality	
CO3:	Impedance (Z), reactance (XC and XL), Admittance, Susceptance and Quality Factor (Q)	
	Impedance (Z), reactance (XC and XL), Admittance, Susceptance and Quality Factor (Q) Students are able to understand and design AC bridge: Owen's Bridge	

CO6:	Students are able to understand the explain the phenomenon of hysteresis in	
	magnetism	
Co7:	Students are able to discriminate different magnetic materials based on their	
	characteristic properties	
	BSc. I Sem-II: DSC- PHYSICS Practical -II	
By the end of this Course student should be able to know about:		
CO1:	Master mechanical measurements and principles: Utilize advanced techniques	
	like Poiseuille's method, bending, and vibration to measure viscosity, Young's	
	modulus, and Poisson's ratio, demonstrating understanding of fluid dynamics and	
	elasticity.	
CO2:	Analyze surface tension and its impact: Employ Jaeger's method to investigate	
	surface tension, recognizing its role in various phenomena and its dependence on	
	material properties.	
CO3:	Explore AC circuits and impedance: Analyze the behavior of series and parallel	
	LCR circuits, measuring impedance and comprehending the influence of	
	individual components (L, C, R) on resonance and phase relationships.	
CO4:	Investigate bridge circuits and transformers: Utilize a B.G. bridge to determine	
	unknown resistances and delve into the principles and applications of	
	transformers, understanding their role in AC power transmission and voltage	
	transformation	

Head,
Department of Physics,
Yashwantrao Chavan
College of Science, Karad
(Satara) 415124
Maharashtra